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Weakly nonlinear descriptions of axisymmetric cnoidal and solitary waves in vortices 
recently have been shown to have strongly nonlinear counterparts. The linear stability 
of these strongly nonlinear waves to three-dimensional perturbations is studied, 
motivated by the problem of vortex breakdown in open flows. The basic axisymmetric 
flow varies both radially and axially, and the linear stability problem is therefore non- 
separable. To regularize the generalization of a critical layer, viscosity is introduced in 
the perturbation problem. In the absence of the waves, the vortex flows are linearly 
stable. As the amplitude of a wave constituting the basic flow increases owing to 
variation in the level of swirl, stability is first lost to non-axisymmetric ‘bending’ 
modes. This instability occurs when the wave amplitude exceeds a critical value, 
provided that the Reynolds number is larger enough. The critical wave amplitudes for 
instability typically are large, but not large enough to create regions of closed 
streamlines. Examination of the most-amplified eigenvectors shows that the per- 
turbations tend to be concentrated downstream of the maximum streamline 
displacement in the wave, in a position consistent with the observed three-dimensional 
perturbations in the interior of a bubble type of vortex breakdown. 

1. Introduction 
It has long been known on theoretical grounds that concentrated vortex flows with 

or without axial streaming are dispersive waveguides admitting propagation of waves 
of finite amplitude along their cores. The primary vortices upon which the waves 
propagate are nearly columnar, having a structure that varies slowly with distance 
along the axis of the vortex. Long axisymmetric waves on strictly columnar primary 
flows are governed by the Korteweg-de Vries (KdV) equation. Finite-amplitude 
wavetrains (cnoidal waves) and solitary waves are possible waves of permanent form 
(Benjamin 1967; Pritchard 1970; Leibovich 1970). These weakly nonlinear waves had 
been presumed possible also at higher amplitudes, and this has recently been verified 
by Leibovich & Kribus (1990, henceforth referred to as L&K). The studies cited, while 
fundamental in nature and having a variety of applications, were all motivated by the 
goal of better understanding of thc phenomenon of vortex breakdown. This paper, 
which investigates the three-dimensional stubility of the axisymmetric waves, follows in 
the same path and has the same goals. 

Solitary waves and cnoidal wavetrains found from the Korteweg-de Vries equation 
are stable within the KdV framework, as shown by Benjamin (1972, 1974). The weakly 
nonlinear theory leading to the KdV equation is a valid asymptotic representation of 
solutions of the Euler equations for axisymmetric small-amplitude long waves. A 
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declaration of stability that follows from the KdV representation is not valid for the 
large-amplitude waves that exist within the larger framework of the axisymmetric Euler 
equations. Furthermore, stability to three-dimensional perturbations cannot be 
established within the KdV framework, no matter how small the waves. There is 
consequently a need for a more complete discussion of stability, and this is the 
objective of this paper. 

An earlier attempt to examine the stability problem by Mac Giolla Mhuiris 
(1986a,b) was inconclusive. He examined the stability of the KdV cnoidal wave to 
three-dimensional perturbations, but his numerical method did not permit sufficient 
spatial resolution to detect unstable modes. Considerable effort was made in the course 
of our research to devise numerical procedures for very large eigenvalue problems 
which would permit adequate spatial resolution. Discussion of the methods used 
appears in Kribus (1991), and a brief account is given in the Appendix. 

It is only sensible to consider the stability of basic flows consisting of finite-amplitude 
waves when the primary columnar flow is stable, and we therefore restrict attention to 
such cases. The numerical evidence reported here indicates that the large-amplitude 
axisymmetric waves are indeed stable to axisymmetric perturbations, as the small- 
amplitude KdV analysis suggests. They are also stable to three-dimensional 
disturbances provided the waves have moderate amplitudes. For sufficiently large 
amplitudes, the waves first lose stability to three-dimensional ‘bending’ or ‘sloshing’ 
mode (azimuthal wavenumber = +_ 1) instabilities. This. and the form of the unstable 
eigenmodes, are consistent with the non-axisymmetric features observed in vortex 
breakdown experiments. As the wave amplitude is increased, the flow on the axis is 
decelerated beneath the wave crest, and local flow reversal occurs when the wave 
amplitude exceeds a particular value. The critical wave amplitude for instability to 
bending modes found here is reached before the wave is large enough to cause flow 
reversal. 

We set out in $2  the basic flows in L&K whose stability are to be examined. The 
stability problem is posed in $ 3 ,  stability results for columnar flows are reported in 94, 
results for waves are reported in 95, and the paper is summarized in $6. 

2. Base flows 
The domain of interest is an infinitely long tube of constant circular cross-section, 

and the analysis is carried out in a cylindrical (r,  8, z )  coordinate system, with velocity 
vector (u, v, tv) .  

Any ‘columnar’ flow (by definition depending only on radial distance from an axis 
of symmetry) is an exact solution of the Euler equations. The basic flows tested for 
stability in this paper are nonlinear waves which may propagate on columnar vortices. 
To investigate stability, a numerical treatment is needed, and one must select a concrete 
form for the underlying columnar state, which we call the primary columnar flow. The 
examples treated in L&K are members of a multiple-parameter family: 

with the particular choice W, = 0, and a velocity scale selected to make W, = 1. This 
reduces (1) to a two-parameter family sometimes called the Burgers-Rott vortex. The 
same two-parameter family of primary flows is adopted here. The complete forms (1) 
were used by Garg & Leibovich (1979), and by Maxworthy, Hopfinger & Redekopp 
(1985) to fit their velocity measurements in flows ahead and downstream of vortex 



Instability of strongly nonlinear waves in vortex jlows 249 

I I 

0 

?1 

FIGURE 1. Bifurcation diagram near the principal bifurcation point. k = 0: columnar solution; 
k = 1 : wave of period L ;  k = 2: wave of period +L. 

breakdown. It will be shown here that some of the columnar solutions bifurcating from 
the Burgers-Rott vortex also may be fitted accurately to the generalized exponential 
family (1). 

Weakly nonlinear wave theory indicates that the amplitude of stationary 
axisymmetric waves of a fixed wavelength is related to the level of swirl. L&K 
constructed strongly nonlinear waves by the continuation of these weakly nonlinear 
steady solutions. Continuation was carried out by considering a one-parameter family 
of columnar primary flows, with the vortex circulation as the control parameter. More 
than one wave branch is possible for a specific primary flow. In addition, at a particular 
value of the circulation, a second steady columnar flow branches from the primary one 
(these are the ‘conjugate flows’, as discussed by Benjamin 1962). The amplitude of the 
waves is found to be an increasing function of the departure of the circulation from a 
discrete set of branching values. 

2.1. Bifurcations JFom the primary Pow 

Fully nonlinear inviscid perturbations to the primary columnar flow can be found. 
Solutions periodic in z depend on three parameters: a, describing the radial rate of 
decay of axial vorticity; A ,  the square of the dimensionless circulation; and the period, 
L, of the motion in the z-direction. Holding a and L fixed, and treating A as the 
bifurcation parameter, various solutions branch from the primary columnar flow at 
discrete values of A .  The kinds of solutions found are conveniently summarized in a 
bifurcation diagram. Figure 1 is a composite of typical bifurcation diagrams with 
examples of three solutions that branch from the primary vortex. Near its bifurcation 
point, each branch is a periodic function of 2knzlL. In the figure, branches are 
identified by axial wavenumber k :  a columnar branch (k = 0) and branches of the 
fundamental (k  = 1) and first-harmonic (k  = 2) wavy solutions are shown. All values 
of a and L produce qualitatively similar diagrams, the main difference being a rapid 
decrease in the separation between the curves for the columnar branch and the first 
wavy branch with increasing a. The upper and lower branches at each fixed k > 0 
correspond to identical flows, but shifted axially as explained in L&K. 

To identify the location of specific points on the bifurcation diagram, we use a 
parameter 

// = (A//l ,)  - 1 
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that measures the relative distance from p ,  the point at which the branch labelled k = 0 
on figure 1 bifurcates from the primary columnar flow. The k = 0 branch is also 
columnar, and we will call it the ‘secondary columnar flow’. Other columnar flows 
branch from the primary one, but they are all centrifugally unstable, and we therefore 
consider them physically irrelevant. 

The extreme value (regardless of sign) of the perturbation axial velocity w’, which 
usually occurs at r = z = 0,  is used as a measure of the perturbation size (see L&K for 
some cases where the extreme perturbation velocity is found off the axis). The locations 
of bifurcation points for several values of L and a are given by L&K. 

2.2. Columnar branches 

For 7 < 0, the secondary columnar branch shows a developing wake-like axial velocity 
profile as the swirl parameter A is decreased from the branch point p ,  as may be seen 
in figure 2 of L&K. The swirl velocity is distorted as well, with the peak swirl moving 
outwards. On the 7 > 0 side of the principal branch, the axial velocity profiles are jet- 
like, and the peak swirl moves towards the axis, as may be seen from figure 3 of L&K. 
The velocity profiles can be fitted to the exponential profiles (1). Faler & Leibovich 
(1977) were able to fit their measured velocity profiles to a similar function, with = a. 
The values of /I found here differ from a, so that (1) defines a wider category of 
‘exponential profiles’, similar to those used by Maxworthy et al. (1985). We fitted the 
model (1) to the computed velocity profiles using a Chi-square algorithm. The fit is 
shown by Kribus (1991) to be quantitatively excellent for the range -0.5 < 7 < 1.1, 
and to be qualitatively good up to 7 = 1.5. 

The values of the fit parameters vary smoothly with 7, as shown in Kribus (1991), 
who is able to obtain an explicit model for W(r; q )  in the form of equation (1): 

(2) 

The azimuthal velocity profiles do not need to be fitted separately, since the 
circulation is a function of the Stokes streamfunction $(r,z; r) ,  so that $ can be 
computed from the axial velocity model. For a given 7, we have for the secondary 
columnar flow 

1 W,(y) = 0.975(7 + 1 
W2(7) = 2.457-0.268q2, 

P(7) = 3 1.2 + 18.27 - 3.847’. 

rV(r; v )  = A ( l  -e-’=$’ ’ ( T  ; T I ) ) .  

2.3. Periodic wavetrains 
The fully nonlinear periodic wavetrains calculated by L&K are continuations of 
weakly nonlinear solutions. For large L, these weakly nonlinear wavetrains are the 
cnoidal waves previously derived by Benjamin (1967), and also obtained by Pritchard 
(1970) and by Leibovich (1970). The form of the streamfunction in the weakly 
nonlinear approximations is 

$(r, z )  = Q(r)  A(z), A(z) = acn’ (bz I k) + c, (3) 
where cn (x) is one of the Jacobi elliptic function, k is the elliptic modulus of the cn 
function, and a, h and c are funclionals of the primary columnar flow (see Kribus 
199 1). The amplitude function Q(r) is determined by a linear eigenvalue problem 
(where the eigenvalue has already been introduced as p). For details, see L&K. 
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FIGURE 2. Streamlines in the (r, z)-plane for the 7 = 0.1 wave solution on the ir. = 3, L = 2, 
k = 1 branch. 
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FIGURE 3. Axial and azimuthal velocity profiles for ir. = 3, L = 2, k = 1 ,  q = 0.1 flow at the wave 
centre I = 0 and the trough z = $L. Dotted line: 91 = 0 profile. 

In a computation with a large fixed axial length L and a fixed value of A near ,LA we 
should expect then to find several types of solutions, besides the original primary 
vortex : the secondary columnar flow, which branches off at p;  periodic cnoidal waves 
with period L and higher harmonics which branch at a sequence of points with A > ,LA; 

and, as L -* co, solitary waves which are superposed on either the primary or secondary 
branch, depending on the sign of 7 .  This expectation is confirmed in L&K, where some 
of these small-amplitude waves are continued to finite amplitude. 

Typical streamlines for an axially varying solution on the k = 1 branch are shown 
in figure 2, and corresponding velocity profiles are presented in figure 3. L&K found 
that as the wave increases in amplitude, the deceleration of the flow near the axis is 
more apparent, and eventually a recirculation region appears. The axial variations and 
velocity distributions of the 7 < 0 solutions are qualitatively similar to those of the 
7 > 0 branches. One main difference is the crest region of the wave, which approaches 
the primary branch for 7 < 0 and the conjugate branch for y > 0. This difference can 
also be inferred from figure 1. As shown in L&K, the fully nonlinear periodic solutions 
resemble the weakly nonlinear cnoidal wave solutions even though the perturbation is 
not small. 

Several solutions of the Navier-Stokes equations in the same geometry are available, 
and have features resembling the inviscid wavy motions. Most computations are at low 
Reynolds number (Re), and are not suitable for direct comparison with inviscid 
solutions. Salas & Kuruvila (1  989) and Beran (1987) present solutions up to Re = 1800 
and 9977, respectively, for several values of the swirl and large L. They found that 
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increasing Re initially increases the wave amplitude. At larger values, the wave 
amplitude saturates and more waves appear downstream of the first at regular 
intervals, with progressively more uniform amplitudes. As Beran notes, the viscous 
solution approaches an inviscid periodic wavetrain for large Re. The effect of 
increasing the swirl is to increase the wave amplitude, corresponding to the 7 > 0 
branches of the inviscid wavetrains. The details of the flow inside the viscous wave 
region are very different from the inviscid solutions, however, this aspect is further 
discussed in Kribus (1991). 

Inviscid solutions for different primary columnar flows found by other investigators 
(Ts’asan 1986; Hafez, Kuruvila & Salas 1986) are qualitatively the same as the cases 
examined here; we therefore believe it likely that the results presented in L&K are 
generic to rotating axisymmetric flows, rather than specific to our choice of the primary 
columnar vortex. The small-viscosity limit of the viscous solutions also agrees in 
general form, if not in details, with the present invicid solutions. 

3. The linear stability problem 
The base flows considered here are steady solutions of the Euler equations. We 

include the viscous terms in the linear stability problem, however, as a way to resolve 
possible (generalized) ‘critical-layer ’ singularities. Perturbations are assumed with a 
small but finite physical viscosity, and we study the stability characteristics as the 
viscosity is decreased. This would resolve inviscid modes that are the limit of viscous 
modes as v+O. 

To this end, consider a flow with a steady, inviscid solution U as initial condition and 
a large Reynolds number (based on a measure of Iq). A small perturbation u to this 
flow will initially evolve according to the linearized equation 

(4) 
(3U 
- = -u .VU-U.Vu-Vp+Re~’V’u+Re-’V’U.  
at 

The flow will evolve slowly due to viscosity even if no perturbations are present at 
time t = 0, and this evolution is forced by the inhomogeneous term representing the 
viscous force generated by U. In addition to this evolution, if any perturbations to U 
are present then the evolution may differ, and this is especially so if the base flow U is 
subject to instability. We wish to distinguish the relative rates of change for Re % 1 due 
to instabilities and the growth rate due to direct viscous development of U. The rate 
of change due to the presence of the small perturbation having initial amplitude 
measured by 6 is wr, where B,. is the growth rate of the leading linear mode. The rate 
of evolution due to direct viscous development is O(Re-’). If B, % (€Re)-’, then the 
evolution of the flow will be dominated by the linear instability. Otherwise, the flow is 
not likely to follow the growth predicted by linear theory, due to the effects of viscosity 
on the initial field U. We will therefore describe as ‘linearly unstable’ only those cases 
for which B~ 9 (€Re)-’. 

The steady, axisymmetric base flow U(r , z )  = ( U ,  V ,  W )  does not depend on the 
azimuth and is periodic in the axial direction. Infinitesimal, three-dimensional 
perturbations u(r, 8, z ,  t )  satisfy the Navier-Stokes equations linearized about U. The 
governing partial differential equations therefore have coefficients periodic in z ,  and 
therefore the stability problem may be treated by Floquet theory. In particular, we may 
look for solutions in the form u(r, 8, z ,  t )  = eiKLQ(r, 8, z ,  t ) ,  where Q is periodic in z with 
the same period as the base flow. We may then construct solutions in the form 
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(ru, m, TW,  rp) = (a, P, y, n) eut+ime+iKz , where a, p, y and n are functions of ( r , z )  with 
period L in z.  Here m may be any integer, and K may be an arbitrarily assigned real 
number. 

Introducing this form, the linearized continuity and momentum equations are 

- - (UP+ im Va)-iK(Uy+ w 4 + 2 -  Vi;, 
r r 

im VP up+ va 
-2- -iK(W/3+ Vy)-  

r r 

-(Uy+Wct)+-r- 1 a Y  - +- 
Re 2 r ( r ) ]  :z[ 

---im. (56 )  
im( V y  + WP) 

r 
-~ 

The viscous term involving the base flow, Re-lV2U, is assumed small compared to 
terms of first order in the perturbation velocity, as explained above. 

At the axis r = 0 the velocity field must be regular, leading to 

a = p =  y = x = 0. (5  e> 

The boundary r = 1 is treated as a stress-free surface: 

The functions (a, p, y,  n) have the same fundamental period as the base flow: 

(a, P, Y, n)I(,,+r,) = (a,  P, Y, n)l(..-;r,). (5  g )  

Equations (5a-g) form an eigenvalue problem for the complex growth rate CT. It 
depends on the parameters K and m (axial and azimuthal wavenumbers) and Re 
(Reynolds number), and on the choice of axisymmetric base flow U ;  the base flow, in 
turn, depends on the period L and (for the flows derived from the Burgers vortex) the 
radial scaling a. 

We apply centre differences to ( 5 )  on a Cartesian grid with uniform intervals in the 
( r ,  z)-plane, to obtain a generalized matrix eigenvalue problem of the form 

AX = ~ B x  (6) 
9 F L M  269 
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where the vector of unknowns is x = (a, p, y,  T C ) ~ ,  the velocities and pressure at the grid 
points. On a grid of M x N interior points, the size of x and the matrices is 4MN. The 
matrices A and B are in general very sparse, and have only a few non-zero diagonals 
each. A more detailed description of the algebraic problem (6) may be found in Kribus 
(1991). 

The matrix eigenvalue problem (6) is much larger than those found in separable 
linear stability studies, since two directions have to be treated numerically. The 
standard QR and QZ algorithms have limited applicability here, because their 
computation time depends cubically on the size of the matrix. We use instead vector- 
iteration methods: the Generalized Inverse Iteration (Kribus 1990, 1991), and a variant 
of the Goldhirsch lntegration (Goldhirsch, Orszag & Maulik 1987; Kribus 1991). 
These have the advantage of working with a small number of vectors, trying to isolate 
a small set of leading eigenvalues, rather than finding the entire eigenvalue spectrum 
as QR does. This can lead to significant savings in computation time. These iterative 
methods perform best when used with sparse matrices, such as those derived from a 
finite-difference discretization of (5) .  A short account of these methods is included in 
the Appendix; a full description, convergence tests and code validation are described 
in Kribus (1991). 

4. Stability on the columnar branches 
When the base flow is columnar, the linear stability problem ( 5 )  becomes separable 

and the perturbation can be treated numerically in the r-direction only. We can then 
avoid the complex algorithms designed for more general non-separable cases, and use 
more efficient methods. We used the spectral code of Yang (1990), applied to problem 
(5 )  with a perturbation of the form: Q = q(r)  eut+imo+imz . Here the fundamental period 
of the base flow is infinite, so a may be any real number: K therefore is redundant and 
we set it to zero. 

The Burgers vortex is stable to inviscid axisymmetric perturbations for all A (L&K). 
The Leibovich & Stewartson (1983) criterion and computation of the leading 
eigenvalues show that the same applies to non-axisymmetric perturbations. We 
conclude that this primary columnar flow is stable to inviscid perturbations. L&K 
showed that the secondary columnar branch, in the neighbourhood of the bifurcation 
point, is also stable to inviscid axisymmetric perturbations. The Howard & Gupta 
(1962) and Leibovich & Stewartson criteria on this branch imply stability to 
axisymmetric perturbations for 7 > - 0.38, and instability to non-axisymrnetric 
perturbations for 9 < -0.08 (see Kribus 1991). 

The leading growth rates are presented in table 1 and figure 4 for several columnar 
flows on the 7 < 0 side of the principal conjugate branch. Solutions on the 7 > 0 side 
are stable, and are not presented. The most unstable mode found is m = m = - 1, and 
positive growth rate appears first at 71 < -0.05, similar to the prediction of the L&S 
criterion. We conclude that the secondary columnar branch is unstable to non- 
axisymmetric perturbations for 7 < -0.05, and stable otherwise. 

The instability found for the secondary columnar branch is not necessarily generic 
to this kind of flow. Another choice for the initial vortex will lead to different flows on 
the secondary columnar branch, which may be less (or more) prone to instability. 
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FIGURE 4. Growth rates for the secondary columnar flows. Solid lines are the computed growth rates; 
dashed lines are l/(eRe), where E is the initial perturbation amplitude in the range 0.014.05. 
Instability is inferred for growth rates above the dashed lines. 

Re r = -0.05 

200 
500 

1000 
1500 -0.171 -3.8691 - 
2000 -0.013 -3.9691 
2500 -0.011 -3.9701 
3000 -0.009 -3.9701 

r = -0.10 T = -0.17 

-0.071 +0.4561 - 
0.081 f3.8581 
0.262 + 3.8791 

-0.020+4.7551 0.332+3.8851 
0.034 +4.764i 0.369 + 3.8871 
0.070 + 47701 0.392 + 38881 
0.095 +4.775i 0.408 +3.889i 

7 = -0.25 

-0.018 + 3.15% 
0.298+3.1751 
0.425+3.175i 
0.469+ 3.1731 
0.492 + 3.171i 
0.506+3.170i 
0.514 + 3.1691 

TABLE 1. Leading growth rates for the secondary columnar flows, a = 14. All modes with 
p n = w = - l  

5. Stability on the periodic k = 1 branch 
We have presented the linear stability problem in a general form, but for applications 

to vortex breakdown (see Leibovich 1984) we are primarily interested in perturbations 
that are localized axially and have significant magnitude near the wave centre z = 0, 
but not upstream. We therefore limit our calculations here to the case K = 0, which 
allows the perturbation to be small and non-oscillating upstream of the wave. 

We have computed the leading growth rates for several wave amplitudes 
corresponding to the k = 1, 7 > 0 branch of figure 1. These amplitudes, measured by 
w'(0, 0), are large, although not large enough to cause flow reversal. Table 2 and figure 
5 present the leading growth rates, for values of Re where the transition to positive 
growth rate occurs. The wavy branches with 7 < 0, on the other side of p, bifurcate 
from the principal conjugate branch, which is already unstable at that point; the 
stability of these flows is therefore not considered. The a = 5 case was selected such 
that the maximum axial deceleration, w'(O,O), is the same as for the a = 3 ,  ?I = 0.05 
flow. Modes of azimuthal wavenumber in the range [ -2,2] were considered. All m = 0 
modes have negative growth rates. The Iml = 1 modes have the largest growth rate in 
all cases. Modes Jml = 2 also have positive growth rates at large Re, but much smaller 
than for Iml = 1. Positive and negative wavenumbers produce eigenvalues and 
eigenvectors that are complex conjugates of each other, and have the same growth rate. 

9-2 
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FIGURE 5. As in figure 4, but for cnoidal waves on the a = 3, L = 2. k = 1 branch. 

Re 

500 
700 
900 

1200 
1500 
1800 
2100 
2400 
3000 
3600 
4000 

a = 3  

7 = 0.02 7 = 0.05 71 = 0.10 

-0.04 -0.36i 
0.16 -0.33i 

0.00 -0.39i 0.28 -0.33i 
0.13 -0.35i 0.41 -0.36i 
0.18 -0.32i 0.45 -0.43i 
0.20 -0.32i 

-0.04 -0.52i 
-0.01 -0.51i 

0.01 -0.50i 

TABLE 2. Leading eigenvalues for the wave flows: K = 0, y = - 

a = 5  

= 0.078 

O.OO+ 0.91i 
0.06 + 0.29i 
0.11 + 0.31i 
0.14t 0.32i 
0.17 + 0.33i 

1 

Owing to the numerical limitations discussed above, we had to settle for a small 
value of the radial scaling parameter: a = 3 ,  rather than the value a = 14 which 
provides a good fit for experimental velocity profiles upstream of the wave. To estimate 
the effect of a on the linear stability problem, we compare the leading growth rates for 
two wave flows having the same maximum axial deceleration (i.e. the same wave 
‘amplitude’): a = 3, q = 0.05 and a = 5 , ~  = 0.078. The qualitative dependence on Re 
seems similar for both cases (see figure 6) ,  except that the onset of instability is shifted 
to higher values of Re. The leading eigenfunctions corresponding to a = 5 are also 
qualitatively similar to the GL = 3 counterparts. If this qualitative similarity exists also 
for higher a (which are not accessible to current computational tools), then the 
conclusions drawn here for small a should carry over, possibly with some 
modifications, to more realistic models of physical vortex flows. 

The direction of rotation (positive or negative 0) of flow structures is determined by 
the signs of the imaginary part of the eigenvalue, mi, and the azimuthal wavenumber 
m. All cases in table 2 have rn = - 1, but the sign of cri is different for a = 3 and 5. The 
leading mode for a = 3 rotates in the negative &direction, opposite to the base-flow 
azimuthal velocity; for a = 5, the direction is reversed; and there should be some value 



Instability of strongly nonlinear waves in vortex flowv 257 

, 
0 1000 2000 3000 4000 

Re 

FIGURE 6. Comparison of leading growth rates between tc = 3, 7 = 0.05 and tc = 5, 7 = 0.078 
flows. The amplitude of the basic nonlinear wave in these two cases is the same. 
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FIGURE 7. (a)  Real part and (6) imaginary part of the velocity field of the leading mode for tc = 3, 
L = 2, k = 1, 7 = 0.10, Re = 500 flow. (i) Contour plot of the azimuthal velocity component. (ii) 
Arrows show the projection of velocity onto the meridional plane. Representative streamlines of the 
base flow are also shown. 

of a in-between, where the perturbation does not rotate at all (standing wave). The 
complex-conjugate case (m = 1) yields the same results since m and CT~ change sign 
simultaneously. It seems then that the rotation of the perturbation flow field depends 
on the details of the base flow, and is not correlated solely with the direction of the 
base-flow azimuthal velocity component. Flow structures in spiral-type vortex 
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FIGURE 8. Evolution of the perturbation velocity field at several phase values: (a) 0, (b) x/4, (c) a/2, 
(d) 3x/4, (e) x. Contour plots are of the azimuthal velocity component; the arrow plots are the 
projection of the velocity onto the meridional plane. 
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FIGURE 9. Perturbation velocity profiles along the axis, at Y = 0.036, at several phase stations. 
(a) Radial velocity u, (b) azimuthal velocity v. 

breakdown usually rotate in the same direction as the upstream azimuthal velocity 
(Leibovich 1984). The upstream flow in these experiments correspond to higher values 
of a than considered here; this is consistent with the trend demonstrated by the two 
values of a presented here. 

Figure 7 shows the velocity fields of the most unstable mode for a = 3, L = 2, 
9 = 0.10, Re = 500. As mentioned above, the velocity fields for the a = 5 case are 
qualitatively similar. The eigenfunctions are normalized such that max (u, v, w) = 1. 

The perturbation velocity field contains large values and large gradients in the ‘wave 
region’ and downstream, but reverts to smaller values and almost columnar behaviour 
upstream ( z  < 0). The distinction between the upstream and downstream sides of the 
wave region is likely to be even more pronounced if the computation is repeated for 
larger values of L. Figure 8 shows the evolution the velocity field for the case in figure 
7, at several values of the phase ( r i t + m 0 ) ;  these may be interpreted as different 
azimuthal stations or different times in a fixed azimuthal position. In figure 8, the 
contour plots display the perturbation azimuthal velocity, and the arrow plots the 
projection of the velocity vector onto the meridional plane. The large flow structures 
(seen as ‘rolls’ or ‘azimuthal jets’ in the velocity plots) seem to oscillate and propagate 
axially between the wave centre z = 0 and the downstream side. Faler & Leibovich 
(1978) found similar features in their measurements of velocities in a bubble-type 
breakdown: velocities oscillate strongly (both in time and in r )  near the axis inside the 
‘bubble’ and at the downstream side, but not upstream. 

Figure 8 contains a large amount of information, describing three velocity 
components as a function of three coordinates ( r ,  z and phase). Figure 9 presents cross- 
sections through these data, showing typical variations of individual velocity 
components along the axial direction, at several values of the phase. It is easy to 
identify the nearly columnar region with small-magnitude perturbations upstream of 
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FIGURE 10. Absolute magnitude of the complex perturbation velocity (solid lines), and rep- 
resentative streamlines of the base flow (dotted lines); a = 3,  L = 2, h = 0.10. (a) Re = 500, 
(b) Re = 1500. 
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FIGURE 11. The radial lengthscale d of the leading mode, a = 3, T,I = 0.10. 

the wave ( z  < 0). Downstream of the wave centre, the perturbation velocity resembles 
half a period of a wave with axial wavenumber a = - 1, which propagates upstream 
(when we consider a constant4 plane) and coming to rest near z = 0. 

The downstream side of the leading mode has significant radial velocity near the 
axis, producing 'sloshing' motions across the axis. Garg & Leibovich (1979) and others 
have observed that the rear end of a bubble-type breakdown contains significant low- 
frequency oscillations, which seem to carry fluid across the axis, and found the 
frequency to be consistent with Irnl = 1 wavenumber. The upstream side of the bubble 
does not contain such oscillations, which is also consistent with the instability 
described here. 

The absolute magnitude of the complex perturbation velocity, (lu12 + 1uI2 + lwI2):, is 
presented in figure 10. The perturbations are largest at the wave centre and 
downstream near the axis. The values are normalized such that the highest value is 1 .  

All three components of the velocity are small near the wall, and the radial extent 
of non-negligible velocity is somewhat smaller for large Re. This suggests the behaviour 
of a centre-mode, although the Reynolds numbers considered here may not be large 
enough to estimate the limiting behaviour at Re+ m. Let d be a measure of radial 
lengthscale of the unstable mode, defined by (u2 + w2); > 0.2 for r 6 d. In figure 11 we 
plot d against Re, with a good fit to the line: d K Re".''. This may be a useful guide 
in developing a centre-mode-type analysis of the inviscid limit. This behaviour of the 
unstable modes signifies that the location of the wall (related to the choice of a)  and 
the type of boundary condition applied at the wall may not have a significant effect on 
the solution for the leading mode. 
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6. Conclusions 
We have shown that large-amplitude wavetrains and solitary waves in vortices are 

stable to axisymmetric disturbances, and are unstable to bending modes provided the 
wave amplitude exceeds a critical threshold. The instability is confined to regions near 
the vortex axis and downstream of the point of maximum reduction of axial velocity 
in the wave. The radial extent of the most unstable perturbation is reduced when 
increasing the Reynolds number; the perturbation is therefore sensibly describable as 
a ‘centre mode’. Laser Doppler anemometer measurements (Faler & Leibovich 1978) 
support flow visualizations that show that the velocity fluctuations are largest in the 
downstream third of the bubble form of vortex breakdown. If the recirculation region 
of a vortex breakdown may be identified as a large-amplitude axisymmetric wave, then 
the instability to bending modes, and the location of the maximum instability strength, 
are all consistent with experimental evidence. The instabilities demonstrated 
theoretically here are therefore consistent with the suggestions made by Leibovich 
(1983, 1984) and by Maxworthy, Mory & Hopfinger (1983). 

Our stability calculations show that perturbations with azimuthal wavenumber 
m = k 1 are most unstable, and therefore presumably preferred. This is consistent with 
the experimental findings of Garg & Leibovich (1979). 

In addition, the stability results show that the sense of rotation of the pattern 
associated with the most unstable perturbation is not always the same, but rather 
depends on the parameters of the basic flow. The literature (see Leibovich 1984 for a 
review) reports differing senses of rotation of streaklines. While this can mislead 
inferences about velocity fields, the results here are clear that a single rotation sense is 
not to be expected for all flows. Furthermore, the present results show that steady (i.e. 
non-rotating) non-axisymmetric patterns can be expected. This, too, has been 
demonstrated experimentally by Sarpkaya (1971) and by Faler & Leibovich (1977). 

This work was supported by the US Air Force Office of Scientific Research, under 
grants AFOSR-89-0346 and AFOSR-91-0226. 

Appendix. Computing leading eigenvalues 
Traditional methods for solving a matrix eigenvalue problem such as (6)  usually 

involve finding all the eigenvalues, using the QZ algorithm (e.g. from IMSL or 
Eispack) and then sorting by the real part to find the leading eigenvalues. This involves 
O(n3) work, where n is the order of the matrices, and becomes expensive or impractical 
for large n ;  little or no advantage can be taken of sparsity or other structure of A and 
B. More economical methods exist for extracting selected eigenvalues and eigenvectors 
of standard eigenvalue problems, i.e. when B is invertible, such as power and Lanczos 
methods. These methods select eigenvalues according to their absolute magnitude, and 
are therefore not directly applicable to stability problems. 

Goldhirsch et al. (1987) presented a method for computing the leading eigenvalues 
of a standard eigenvalue problem, involving integration of a transient problem derived 
from ( 6 )  when B is invertible. This method originally included a pre-filtering stage 
followed by an Arnoldi-type process to approximate the leading invariant subspace. 
The length of the filtering stage is somewhat arbitrary; in addition, convergence may 
become very slow if the separation of the eigenvalues is small. Another problem may 
arise if the problem is defective, i.e. a leading eigenvalue has generalized eigenvectors; 
in this case, the integration method may return inconclusive or inconsistent results. 
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We have modified the integration procedure by removing the initial filtering and 
constructing the approximate invariant subspace by Simultaneous Iterations using 
Schur vectors (Stewart 1976). This ensures convergence to a meaningful solution even 
for defective matrices, and resolves the problem of possibly inadequate or excessive 
filtering time. B in (6) is not invertible, and some matrix manipulation (analogous to 
using an equation for the pressure) was required to reduce (6) to standard eigenvalue 
problem form (see Kribus 1991). We found that as the matrix size increased due to 
application of finer grids, convergence of this method slowed considerably; it turns out 
that more and more eigenvalues appeared with growth rate close to that of the leading 
eigenvalue. We were able therefore to use this method only on low-resolution grids (e.g. 
30 x 30), to obtain low-accuracy approximate leading eigenvalues. These coarse-grid 
solutions were then used as initial guesses for the procedure described next, which 
demonstrated very fast convergence if supplied with a good initial guess. 

Kribus (1990) suggested the Generalization Inverse Iteration (GII), which applies to 
a problem like (6) the linear fractional transformation 

a is a real positive, and /3 a complex, constant. The important effect of (A 1) is to map 
the half-plane to the left of r = p to the inside of the unit circle in the A-plane. If we 
select /3 such that, for some m, 

> Rev) ,  i = 1 ... nz, Re (q) { < Rev) ,  i = m + l  ... n, 

then the corresponding m eigenvalues in the A-plane will be dominant: 

> 1, 

< 1, 

i = 1 ... m, 

i = m + l  ... n. 

The eigenvalue problem for A is of standard form: 

cu = C;lC,u = hu, (A 2) 

where c, =-[A-(a+/3)B], c, = [A+(a+)B]. 

The problem of computing the leading eigenvalues of (6) becomes that of computing 
the dominant eigenvalues of (A 2); the standard methods can now be applied. We used 
a generalization of the power method, Simultaneous Iteration, to find dominant 
eigenvalues and invariant spaces of C. The leading eigenvalues of (6) can then be 
recovered by inverting (A 1); eigenvectors for the u and h problems are identical. 

The mapping constants a and /I allow the user some control over the rate of 
convergence and the order in which the leading eigenvalues emerge during the 
iteration. The user must have an estimate of where in the complex plane the leading 
eigenvalues reside; /3 is set to the left of this region. The point c = / I + x  is a singular 
point of (A 1) which maps to infinity in the A-plaque; eigenvalues close to c will map 
to very large modulus in the A-plane, and will converge rapidly during the iteration of 
(A 2). a should be set, therefore, so that c is near the centre of the leading region or 
near the most important eigenvalue. A more detailed discussion of the mapping (A 1) 
and examples of its use may be found in Kribus (1990, 1991). In the present 
application, coarse-grid solutions were available from the integration scheme ; with a 
good choice of a and /I, convergence on finer grids could be reached within a few (< 10) 
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GI1 steps. We were limited in problem size only by the linear solver (ME28 from the 
Harwell library) used to perform the multiplication by C;' in (A 2); see Kribus 1991 
for details and discussion. A more specific solver that would exploit better the specific 
structure of the matrices in (6) could extend considerably the range of applicability of 
this algorithm. 
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